
The Multicore-Aware Data Transfer Middleware Project

 L. Zhang, P. DeMar, W. Wu Tan Li*, Y. Ren*, S. Jin*, D. Yu+
 Fermilab *Stony Brook University, +BNL

 {liangz, demar, wenji}@fnal.gov {tan.li, yufei.ren, shujin}@stonybrook.edu , dtyu@bnl.gov

Abstract— Existing data movement tools are still bound by

major inefficiencies when running on multicore systems. To
address these inefficiencies and limitations, DOE’s Advanced
Scientific Computing Research (ASCR) office has funded
Fermilab and Brookhaven National Laboratory to
collaboratively work on the Multicore-Aware Data Transfer
Middleware (MDTM) project. MDTM aims to accelerate data
movement toolkits on multicore systems. A prototype version of
MDTM is currently undergoing evaluation and enhancement.

Index Terms— Multicore; network; NUMA

I. PROBLEM SPACE AND SIGNIFICANCE
Multicore and manycore have become the norm for

high-performance computing. These new architectures
provide advanced features that can be exploited to design
and implement a new generation of high-performance
data movement tools. To date, numerous efforts have been
made to exploit multicore parallelism in order to speed up
data transfer performance: At the application level, various
data movement tools have been developed, such as
TCP-based GridFTP [1] and BBCP [2]. Parallel data
transfer technologies are widely used in bulk data
movement and provide significant improvement in
aggregate data transfer throughput. These data transfer
tools typically employ a multi-threaded architecture.
Multiple threads are utilized, with each thread handling
one or multiple flows, depending on the runtime
environments. At the OS level, major OSes (e.g.,
Windows, and Linux) have been redesigned and
parallelized to utilize multicore platforms more
effectively [3]. At the hardware level, new multi-queue
NIC technologies have been introduced, and the use of
NUMA (non-uniform memory access) systems is on the
rise. Due to the scalability advantage of NUMA
architecture over UMA (uniform memory access)
architecture, high-performance data transfer systems are
typically NUMA based and feature several nodes
distributed across the system.

Although these parallelization efforts have improved
data transfer performance significantly, existing data
movement tools are still bound by major inefficiencies
when running on multicore systems. While there are
numerous reasons for these inefficiencies, the inefficiencies
fall into two general problem areas: (1) existing data
transfer tools are unable to fully and efficiently exploit
multicore hardware under the default OS support, especially
on NUMA systems; and (2) the disconnect between

software and multicore hardware renders network I/O
processing on multicore systems inefficient [4]. These
inefficiencies are fundamental and common problems that
data movement tools will inevitably encounter when
running on multicore systems. Ultimately, these
inefficiencies result in performance bottlenecks on the end
systems. In turn, such end system performance bottlenecks
also impede the effective use of advanced networks. The
U.S. Department of Energy (DOE) has a strategic goal of
deploying terabit networks in support of distributed extreme-
scale data movement. Existing backbone networks are already
built upon ultra-scalable 100-Gigabit line rate technologies.
Resolving performance issues within end systems is now
becoming the critical element within the end-to-end loop
of distributed extreme-scale data movement. Terabit
networks need terabit-capable end systems to efficiently
move data on and off of the network.

II. THE MDTM SOLUTION
To address these inefficiencies and limitations, DOE’s

Advanced Scientific Computing Research (ASCR) office
has funded Fermilab and Brookhaven National Laboratory
to collaboratively work on the Multicore-Aware Data
Transfer Middleware (MDTM) project. MDTM aims to
accelerate data movement toolkits on multicore systems.
Essentially, MDTM consists of two major components
(Figure 1):

Figure 1: MDTM Architecture

• MDTM data transfer applications (client or server):
An MDTM application performs data transfer tasks. It
adopts an I/O-centric architecture that uses dedicated
threads to perform network and disk I/O operations.
In addition, it uses MDTM middleware services to
fully utilize the underlying multicore system.

• MDTM middleware service: The middleware will
hardness multicore parallelism to scale data movement
toolkits on host systems. It provides generic services
and functions that can be called by an MDTM

MDTM Middleware Services

OS Services

MDTM Data Transfer Applications/Tools

Hardware

Access services

Access services

Access
services

application to ensure efficient resource utilization on
the host systems. MDTM middleware schedules and
assign system resources based on the needs and
requirements of data transfer applications (i.e., data
transfer-centric scheduling). It also takes into account
other factors, including NUMA topology, I/O locality,
and QoS.

In the MDTM project, we plan to achieve several goals: (a)

develop new software tools for extreme-scale data movement;
(b) investigate, design, and implement generic middleware
mechanisms to enable extreme-scale data movement tools to
exploit multicore hardware fully and efficiently, particularly on
NUMA-based platforms; and (c) integrate the solutions
developed in (a)-(b) to provide a unified solution to support
extreme-scale data transfer toolkits. To the best of our
knowledge, the scope of this work is unique.

III. CURRENT STATE, INITIAL RESULTS, AND FUTURE
DIRECTIONS

The development and implementation of this project has
proceeded on schedule, with both the middleware and the
application teams have achieving their year-1 milestone goals.
Specifically, the application team implemented key modules
such as thread/flow management, request preprocessing, and
various data access/transmission methods. The middleware
team has implemented key modules such as multicore system
profiling, topology-based resource scheduling, and interrupt
affinity for network I/O. With this progress, the teams have
been able to successfully integrate the middleware and
application. The teams are now conducting initial function and
performance tests.

In one set of initial tests, we evaluated and compared the
performance of MdtmAPP and GridFTP. In our test
configuration, we used one source server with 2 NUMA nodes,
32 cores, and with SSDs to store 8 large files. We used one
destination server with 4 NUMA nodes, 64 cores, and software
RAIDs to store the transferred files. Maximum network
bandwidth between the two servers is 40Gbps. Our MdtmApp
used 8 parallel groups of storage/network threads to handle the
file transfers. For fair performance comparison, we ran 8
parallel and independent instances of GridFTP. Performance
results were captured using the Ganglia tools, and the pictures
below show the bandwidth throughput (Figure 2), and both
source/destination CPU consumption (Figures 3a & 3b).

The near term focus of MDTM development will be on
continued evaluation and enhancement of the software on
40GE-attached host systems, with particular emphasis in long
distance (high RTT), high volume data transfer environments.
Over the intermediate term, the project team intends to expand
the evaluation of the product across a wider spectrum of
multicore/manycore platform types. A key longer term
objective is to include an external MDTM resource scheduling
capability, enabling end system CPU resources to become a
reservable resource for application-driven end-to-end path
reservations.

Figure 2: Throughput

Figure 3a: CPU Utilization (source)

Figure 3b: CPU Utilization (sink)

References:

[1]	
 	
 W.	
 Allcock,	
 J.	
 Bester,	
 J.	
 Bresnahan,	
 A.	
 Chervenak,	
 L.	

Liming,	
 and	
 S.	
 Tuecke,	
 “GridFTP:	
 Protocol	
 Extension	

to	
 FTP	
 for	
 the	
 Grid,”	
 Grid	
 Forum	
 Internet-­‐Draft,	
 Mar.	

2001.	

[2]	
 BBCP,	
 http://www.slac.stanford.edu/~abh/bbcp/	

[3]	
 P.	
 Willmann	
 et	
 al.,	
 “An	
 Evaluation	
 of	
 Network	
 Stack	

Parallelization	
 Strategies	
 in	
 Modern	
 Operating	

Systems,”	
 In	
 Proc.	
 USENIX	
 Annual	
 Technical	

Conference,	
 pp.	
 91–96,	
 2006.	

[4]	
 	
 W.	
 Wu,	
 P.	
 DeMar,	
 M.	
 Crawford,	
 “A	
 Transport-­‐
Friendly	
 NIC	
 for	
 Multicore/Multiprocessor	
 System,”	

IEEE	
 Transactions	
 on	
 Parallel	
 &	
 Distributed	

Systems,	
 Volume	
 23,	
 Issue	
 4,	
 pp.	
 607-­‐615,	
 2012.	

